Replication protein A safeguards genome integrity by controlling NER incision events

نویسندگان

  • René M. Overmeer
  • Jill Moser
  • Marcel Volker
  • Hanneke Kool
  • Alan E. Tomkinson
  • Albert A. van Zeeland
  • Leon H.F. Mullenders
  • Maria Fousteri
چکیده

Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complexes; however, its regulation in vivo is poorly understood. Notably, the transition from dual incision to repair synthesis should be rigidly synchronized as it might lead to accumulation of unprocessed repair intermediates. We monitored NER regulatory events in vivo using sequential UV irradiations. Under conditions that allow incision yet prevent completion of repair synthesis or ligation, preincision factors can reassociate with new damage sites. In contrast, replication protein A remains at the incomplete NER sites and regulates a feedback loop from completion of DNA repair synthesis to subsequent damage recognition, independently of ATR signaling. Our data reveal an important function for replication protein A in averting further generation of DNA strand breaks that could lead to mutagenic and recombinogenic events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential binding kinetics of replication protein A during replication and the pre- and post-incision steps of nucleotide excision repair.

The ability of replication protein A (RPA) to bind single-stranded DNA (ssDNA) underlines its crucial roles during DNA replication and repair. A combination of immunofluorescence and live cell imaging of GFP-tagged RPA70 revealed that RPA, in contrast to other replication factors, does not cluster into replication foci, which is explained by its short residence time at ssDNA. In addition to rep...

متن کامل

Coordination of dual incision and repair synthesis in human nucleotide excision repair.

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5' to the lesion by ERCC1-XPF and 3' to the lesion by XPG leads to the removal of a lesion-containing oligonucleotide of about 30 nucleotides. The resulting single-stranded DNA (ssDNA) gap on the undamaged strand i...

متن کامل

Telomeres are partly shielded from ultraviolet-induced damage and proficient for nucleotide excision repair of photoproducts

Ultraviolet light induces cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone photoproducts, which interfere with DNA replication and transcription. Nucleotide excision repair (NER) removes these photoproducts, but whether NER functions at telomeres is unresolved. Here we use immunospot blotting to examine the efficiency of photoproduct formation and removal at telomeres purified ...

متن کامل

Global genome repair is required to activate KIN17, a UVC-responsive gene involved in DNA replication.

UV light provokes DNA lesions that interfere with replication and transcription. These lesions may compromise cell viability and usually are removed by nucleotide excision repair (NER). In humans, inactivation of NER is associated with three rare autosomal recessive inherited disorders: xeroderma pigmentosum (XP), Cockayne syndrome, and trichothiodystrophy. The NER earliest step is lesion recog...

متن کامل

Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells

Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 192  شماره 

صفحات  -

تاریخ انتشار 2011